Technical Datasheet | Sep 2023 | Revision - 0

X3 Series Battery Management System

ERX3-NMC20S30A, ERX3-NMC20S50A, ERX3-NMC20S70A, ERX3-NMC20S100A

1 Features

- Industrial grade BMS for 74.0V NMC battery
- Positive terminal (high side) switch
- AIS-156-A3 compliant
- Ultra-fast current response time: 8μS
- High tolerance to transient voltages
- Typical cell voltage accuracy of 1mV
- Supports 4 battery temperature sensors
- Onboard flash memory for up to 3 months of battery data storage
- Integrated audio alarm for fault indication
- Isolated CAN and RS-485 communication
- Dedicated peripheral attachment port with support for Display, GPRS, GPS and Bluetooth
- Parameter configuration through PC and mobile application

2 Applications

- Energy storage battery for inverters, UPS
- Low speed two-wheeler and threewheeler electric vehicle
- Solar grade batteries up to 10kWhr

3 Description

ERX3 battery management system (BMS) is a robust, precise and extremely reliable industrial grade BMS device with best-in-class surge current handling and short circuit protection capability. An ultra-fast current response time along with an advanced short circuit detection mechanism enables the BMS to handle even direct shorting of battery terminals with thick conductor cables.

Unlike most other BMS solution where the protection switch is present on the negative terminal of the battery, ERX3 BMS implements positive terminal (high side) switch. In case of a fault, the positive terminal of the battery is disconnected.

During over load or short circuit conditions when the BMS protection switch turns — OFF, the BMS is subjected to large flyback voltage spike, especially if the load is inductive in nature. ERX3 BMS has an extremely high flyback current immunity and can successfully break over 600% rated current with inductive loads.

Other reliability features include isolated communication channels consisting of Iso-CAN, Iso-RS-485 and Iso-UART. This ensures that the BMS system can function safely even if the communication line is subjected to abnormal electrical conditions.

ERX3-NMC20S				
Cell Chemistry	LiNiMnCoO ₂			
Nominal Cell Voltage	3.7V			
Series Cells	20			
Nominal battery voltage	74.0V			

4.1 General Specification

SN	PARAMETER	VALUE	UNIT	REMARKS	
1	Nominal battery voltage	74.0	٧	20S cell configuration	
2	Operating current – active	8	mA	Battery voltage 72V	
3	Operating current – Sleep	500	μΑ	Battery voltage 72V	
4	Power MOSFET configuration	SPST	I	Positive terminal, High side	
		5.0		ERX3-NMC20S30A	
5	Internal resistance	3.0	$m\Omega$	ERX3-NMC20S50A	Max resistance
	(Terminal to terminal)	1.5		ERX3-NMC20S70A	$T_{BMS} = 50$ °C
		1.1		ERX3-	
				NMC20S100A	
6	Battery temperature sensors	4	1		
7	Onboard data logging period	90	Days		
8	Communication			CAN, RS-485	
9	Communication isolation	YES	_	Isolated channels	

4.2 Absolute Maximum Rating

SN	PARAMETER	MIN	MAX	UNIT
1	Battery voltage	-1	95	V
2	Cell voltage $V_N - V_{N-1}$	-0.2	5	V
3	Operating ambient temperature	-20	70	°C
4	Maximum load inductance ^{#1}		100	μН

Operation beyond the absolute maximum rating may cause immediate damage to the device.

4.3 Measurement Accuracy

SN	PARAMETER	TYP	MAX	TEST CONDITION
1	Cell voltage accuracy	1mV	1.6mV	−10°C to 60°C, 0V to 4.5V
2	Battery voltage accuracy	0.05%	0.01%	−10°C to 60°C, 10V to 30V
3	Current accuracy (0A - 120%)	2% ± 0.1A	4% ± 0.2A	25°C ambient, T _{BMS} < 60°C
4	Current accuracy (> 120%)	3%	5%	25° C ambient, $T_{BMS} < 60^{\circ}$ C
5	Current thermal drift	_	0.03%/°C	T _{BMS} 25°C to 90°C
6	Temperature accuracy	1°C	3°C	−10°C to 60°C
7	Measurement bandwidth#2	5Hz		
8	Data readout frequency	1Hz		

^{#1} Maximum load inductance is limited by the ability of the BMS to successfully interrupt currents as high as the short circuit limit without failure. If the nature of load is highly inductive, external TVS must be installed across the load. The clamping voltage of the TVS must not exceed the absolute maximum rated voltage of the BMS

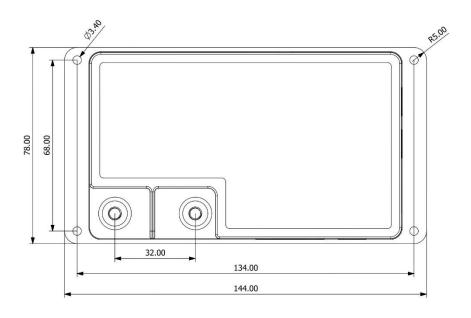
RXN Electric Pvt. Ltd. 2 www.rxnelectric.com

^{#2} Measurement bandwidth refers to the bandwidth of current and voltage signal provided by the BMS to the external host after internal digital filtering. The actual acquisition and measurement bandwidth of the BMS is much higher. High bandwidth data is used only for internal functioning of the BMS.

Research In Action

SN	PARAMETER	VAL	.UE	UNIT	REMARKS
	PACK VOLTAGE SPECIFICATION				-
1	Over-charge entry threshold		84.6	٧	Equivalent to 4.23V/Cell
2	Over-charge exit threshold		80.0	V	Equivalent to 4.0V/Cell
3	Over-discharge entry threshold		56.0	V	Equivalent to 2.80V/Cell
4	Over-discharge exit threshold		60.0	V	Equivalent to 3.00V/Cell
5	Sleep mode entry threshold		52.0	V	Equivalent to 2.60V/Cell
6	Sleep mode exit threshold		55.0	V	Equivalent to 2.75V/Cell
	CELL VOLTAGE SPECIFICATION		00.0	<u> </u>	Equivalent to 2.70 V/ Octi
7	High voltage entry threshold		4.25	V	
8	High voltage exit threshold		4.10	V	
9	Low voltage entry threshold		2.75	V	
10	Low voltage exit threshold		2.73	V	
10	_		2.90	V	
	CURRENT SPECIFICATION	00	4.5		_
	Continuous surrent retina	30	15 25	^	ERX3-NMC20S30A
11	Continuous current rating Discharge Charge	50 70	25 35	Α	ERX3-NMC20S50A ERX3-NMC20S70A
	Discharge Charge				ERX3-NMC20S100A
		100	50 120		Overload duration: 60s
	Over ourrent conscitu		150	%	Overload duration: 50s Overload duration: 20s
12	Over current capacity		300	%	Overload duration: 208 Overload duration: 1s
13	Short circuit current threshold		550	%	% of continuous rating
14	Short circuit reaction time		8	μs	70 or continuous ruting
15	Short circuit auto-restart time		3	S	Auto restart after short removal
16	Over load auto-restart time		10	S	Tate restart arter emercineval
17	Max output load for successful		70	%	% of rated load current
' '	hot—start after a fault trip		, 0	70	70 of rated load carrent
	PRECHARGE SPECIFICATION		J		
18	Precharge resistance		30	Ω	
19	Maximum precharge duration		2	S	
20	Precharge repeat time		5	S	
	Maximum load capacitance for	2	2,000	μF	
	successful one shot precharge				
	BALANCER SPECIFICATION	1			
21	Balancer type	Pa	ssive		
22	Typical balancing current		50	mA	
23	Balancer ON ΔV_{Cell} threshold		30	mV	Corse balancing
0.1	B.I. OFF W. II. I.I.		10		Fine balancing
24	Balancer OFF ΔV _{Cell} threshold		5	mV	
25	Low V_Cell stop threshold		3.30	V	Balancing stops below this voltage
	High V_Cell discharge threshold		3.65	V	Forced discharge is initiated on
26					cells above this voltage regardless
1					of cell voltage differential

Research In Action


4.5 Thermal Specification

SN	PARAMETER	VALUE	UNIT	REMARKS
1	Maximum heat dissipation at rated	5		ERX3-NMC20S30A
	current	8	W	ERX3-NMC20S50A
		10		ERX3-NMC20S70A
		12		ERX3-NMC20S100A
2	Thermal resistance Rθ _{CA}	3.0	°C/W	
	Case to ambient (vertical mounting)			
3	ΔT max at rated current	< 40	°C	
4	Working temperature range	-20 to 60	°C	Derate maximum permissible
	(ambient temperature)			current above 50°C

4.6 Mechanical Specification

SN	PARAMETER	VALUE	UNIT	REMARKS
1	Dimensions	144x78x17.5	mm	
2	Weight	250	g	
3	Waterproofing	IP51		Protected from limited dust and water droplets

X3 BMS Mechanical Drawing

